3,057 research outputs found

    Surveillance on the light-front gauge fixing Lagrangians

    Full text link
    In this work we propose two Lagrange multipliers with distinct coefficients for the light-front gauge that leads to the complete (non-reduced) propagator. This is accomplished via (nA)2+(A)2(n\cdot A)^{2}+(\partial \cdot A)^{2} terms in the Lagrangian density. These lead to a well-defined and exact though Lorentz non invariant light front propagator.Comment: 7 pages. This is an improved version of hep-th/030406

    Light-front time picture of few-body systems

    Get PDF

    Symmetrical Temperature-Chaos Effect with Positive and Negative Temperature Shifts in a Spin Glass

    Full text link
    The aging in a Heisenberg-like spin glass Ag(11 at% Mn) is investigated by measurements of the zero field cooled magnetic relaxation at a constant temperature after small temperature shifts ΔT/Tg<0.012|\Delta T/T_g| < 0.012. A crossover from fully accumulative to non-accumulative aging is observed, and by converting time scales to length scales using the logarithmic growth law of the droplet model, we find a quantitative evidence that positive and negative temperature shifts cause an equivalent restart of aging (rejuvenation) in terms of dynamical length scales. This result supports the existence of a unique overlap length between a pair of equilibrium states in the spin glass system.Comment: 4 page

    Rejuvenation in the Random Energy Model

    Full text link
    We show that the Random Energy Model has interesting rejuvenation properties in its frozen phase. Different `susceptibilities' to temperature changes, for the free-energy and for other (`magnetic') observables, can be computed exactly. These susceptibilities diverge at the transition temperature, as (1-T/T_c)^-3 for the free-energy.Comment: 9 pages, 1 eps figur

    Ontology Validation for Managers

    Get PDF
    Ontology driven conceptual modeling focuses on accurately representing a domain of interest, instead of making information fit an arbitrary set of constructs. It may be used for different purposes, like to achieve semantic interoperability (Nardi, Falbo and Almeida, 2013), development of knowledge representation models (Guizzardi and Zamborlini, 2012) and language evaluation (Santos, Almeida and Guizzardi,2010). Regardless its final application, a model must be accurately defined in order for it to be a successful solution. This new branch of conceptual modeling improves traditional techniques by taking into consideration ontological properties, such as rigidity, identity and dependence, which are derived from a foundational ontology. This increasing interest in more expressive languages for conceptual modeling is shown by OMGs request for language proposals for the Semantic Information Model Federation (SIMF) (OMG,2011). OntoUML (Guizzardi, 2005) is an example of a language designed for that purpose.Its metamodel (Carraretto, 2010) is designed to comply to the Unified Foundational Ontology (UFO). It focus on structural aspects of individuals and universals.Grounded on human cognition and linguistics, it aims to provide the most basic categories in which humans understand and classify things around them.In (Guizzardi, 2010) Guizzardi quotes the famous Dijkstras lecture, in which he discusses the humble programmer and makes an analogy entitled the humble ontologist. He argues that the task of ontology-driven conceptual modeling is extremely complex and thus, modelers should surround themselves with as many tools as possible to aid in the development of the ontology. These complexities arise from different sources. A couple of them come from foundational ontology itself, both its modal nature, which imposes modelers to deal with possibilities, and the many different restrictions of each ontological category. But they also come from the need of accurately defining instance level constraints, which require additional rules, outside of the languages graphical notation. To help modelers to develop high quality OntoUML models, a number of tools have been proposed to aid in different phases of conceptual modeling. From the construction of the models themselves using design patterns questions (Guizzardi et al., 2011), to automatic syntax verification (Benevides, 2010) and model validation through simulation (Benevides et al., 2010). The importance of domain specification that accurately captures the intended conceptualization has been recognized by both the traditional conceptual modeling community (Moody et al., 2003) and the ontology community (Vrande&#269;i&#263;, 2009). In this research we want to improve (Benevides et al., 2010) initiative, but focus exclusively on the validation of ontology driven conceptual models, and not on verification. With the complexity of the modeling activity in mind, we want to help modelers to systematically produce high quality ontologies, improving precision and coverage (Gangemi et al., 2005) of the models. We intend to make the simulationbased approach available for users that are not experts in the formal method, relieving them of the need to learn yet another language, solely for the purpose of validating their models

    Smart Plastic Antibody Material for Hemoglobin Tailored by Silica Surface Imprinting and with Charged Binding Sites: Its use as Ionophore in Potentiometric Transduction

    Get PDF
    JORNADAS DE ELECTROQUÍMICA E INOVAÇÃO 2013Human hemoglobin (Hb) is a globular metalloprotein, present in the blood and involved in gas transport. Hb-associated disturbances are related to several diseases, such thalassemia, anemia, heart disease and leukemia, or to side-effects from other diseases, such as cancer. Overall, it is of great importance to know the concentration of Hb in the blood in many health-related conditions. There are many methods described in the literature for determining Hb. Most of these rely on antibody/antigen interactions, due to the high selectivity of the affinity reaction taking place between these biomolecules. However, the use of antibodies for Hb determination in routine clinical use is very expensive, due to the high cost of the material, the need for special handling and storage, and the non-reusability. These constraints may be limited by replacing natural antibodies by plastic receptors, obtained by molecular imprinting procedures. Thus, this work describes a novel smart plastic antibody material (SPAM) by surface imprinting technique for the detection of Hb and its application to design small, portable and low cost potentiometric devices. The SPAM material was obtained by linking Hb to silica nanoparticles and allowing its subsequent interaction with different vinyl monomers, of different chemical functions and ionic charges. Control materials were designed in parallel to assess the ability of establishing stereochemical recognition of Hb and the effect of the kind/charge of the monomers employed. Scanning Electron Microscopy analysis confirmed the surface modification of the silica material used for imprint. All materials were mixed with PVC/plasticizer and applied as selective membranes in potentiometric transduction. Suitable emf variations were detected only for selective membranes having a SPAM material and a charged lipophilic anionic additive. All control materials were unable to produce a potentiometric response. Overall, good features were obtained for SPAM-based selective membranes carrying an anionic lipophilic additive. In HEPES buffer of pH 5, limits of detection were 43.8μg/mL for a linear response after 83.8μg/mL with a cationic slope of +40.4mV/decade. Good selectivity was also observed against other coexisting biomolecules. The analytical application was conducted successfully, showing accurate and precise results

    Optical study of interactions in a d-electron Kondo lattice with ferromagnetism

    Full text link
    We report on a comprehensive optical, transport and thermodynamic study of the Zintl compound Yb14_{14}MnSb11_{11}, demonstrating that it is the first ferromagnetic Kondo lattice compound in the underscreened limit. We propose a scenerio whereby the combination of Kondo and Jahn-Teller effects provides a consistent explanation of both transport and optical data.Comment: 4 page
    corecore